Lecture 3

Understanding op-amp specifications

Prof Peter YK Cheung Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EE2_CAS/ E-mail: p.cheung@imperial.ac.uk

PYKC 15 Oct 2024

What you should know already?

Inside a typical BJT op-amp

- Three stages architecture:
 - 1. Differential input stage long-tail pair (Yr 1 Circuits part 2, adc_9, slides 8-14)
 - 2. Voltage gain stage common emitter amp (adc_6, slides 3-7)
 - 3. Output drive stage push-pull circuit

Inside a typical MOSFET op-amp

Early MOSFET op-amp follows similar architecture to the BJT version.

n-type input MOSFETs but not rail-to-rail

- Similar op-amp is obtained by:
 - > Flip circuit up-side-down.
 - Replace all n-type with p-type and vice versa.
- Not rail-to-rail input or output.
- Asymmetrical output drive.
- Bad for low-voltage, single supply.

Complementary differential input

Use complementary differential input to solve input rail-to-rail issue.

Op-amp Input Specifications

These are the input specifications for the MCP6001 op-amp.

Input Offset								
Input Offset Voltage	V _{OS}	-4.5	_	+4.5	mV	V _{CM} = V _{SS} (Note 1)		
Input Offset Drift with Temperature	$\Delta V_{OS} / \Delta T_A$	—	±2.0	—	µV/°C	T _A = -40°C to +125°C,		
						$V_{CM} = V_{SS}$		
Power Supply Rejection Ratio	PSRR	_	86	_	dB	V _{CM} = V _{SS}		

Input Bias Current and Impedance						
Input Bias Current:	I _B	—	±1.0	—	pА	
Industrial Temperature	I _B	_	19		рА	T _A = +85°C
Input Offset Current	I _{OS}	—	±1.0	—	pА	
Common-Mode Input Impedance	Z _{CM}	—	10 ¹³ 6	_	Ω pF	
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 3	_	Ω pF	

Common-Mode						
Common-Mode Input Range	V _{CMR}	$V_{SS} - 0.3$	—	V _{DD} + 0.3	V	
Common-Mode Rejection Ratio	CMRR	60	76	—	dB	V_{CM} = -0.3V to 5.3V, V_{DD} = 5V

Highlighted entries are implemented in the MCP6001 LTSpice model.

Source: MCP6001 datasheet

Output Stage – Class B

Yr 1st ADC part 2 Lecture 6, S3-5

- Q5 is another emitter follower for sinking current from Vout (PULL)
- This is known as a PUSH-PULL or class B amplifer circuit
- ♦ δ Vout ≈ δ V_{in}, i.e. its gain is 1
- Each transistor only operate for half cycle or 180° of a sinewave signal
- Further, Q4 and Q5 requires VBE > 0.7V to start conducting, therefore this amplifier has distortion.

Bipolar output Stage – Class AB output

- ✤ Q8 push emitter follower sourcing current
- ✤ Q9, Q10 pull emitter follower sinking current
- ♦ D1, D2 forward bias due to I_1
- Keep Q8 and Q9 in linear region reduce distortion
- ✤ Q9 PNP has poor current gain
- Combine with Q10 NPN to boost current gain
- Q9, Q10 called a "Sziklai" pair (different from Darlington pair)

Class AB output of MOSFET op-amp

• Improved output stage cannot drive low impedance load, say 8Ω speaker.

Output Short-Circuit Current	I _{SC}	—	±6	—	mA	V _{DD} = 1.8V
(Source: MCP6001 datasheet)		—	±23	—	mA	V _{DD} = 5.5V

Op-amp Output Specifications

These are the output specifications for the MCP6001 op-amp.

Output								
Maximum Output Voltage Swing	V _{OL} , V _{OH}	V _{SS} + 25	—	V _{DD} – 25	mV	V _{DD} = 5.5V, 0.5V input overdrive		
Output Short-Circuit Current	I _{SC}	_	±6 ±23		mA mA	V _{DD} = 1.8V V _{DD} = 5.5V		

Highlighted entries are implemented in the MCP6001 LTSpice model.

Source: MCP6001 datasheet

Block Diagram of a Class D amplifier

The PAM8302A Audio Amplifier

- 2.5W Output at 10% THD with a 4Ω Load and 5V Power Supply
- Filterless, Low Quiescent Current and Low EMI
- High Efficiency up to 88%
- Superior Low Noise
- Short Circuit Protection

Stability issue in op-amps

- Op-amp as an amplifier always uses NEGATIVE FEEDBACK to determine the gain.
- Consider this unity gain buffer: break the loop in the feedback path.
- Due to delay, could feedback a signal that is 180° out of phase relative to input.
- The negative feedback now become positive feedback, leading to oscillation.

Stability requirement:

- The open-loop gain is > 1, but the phase angle must be <180° at all signal frequencies, OR
- The phase angle is ≥ 180°, but the open-loop gain is < 1 at all signal frequencies.

Open-loop gain and compensation capacitors

Op-amp Loop Gain specification

Open-Loop Gain			•			•		
DC Open-Loop Gain (Large Signal)	OL 88 1'		112	—	dB V _{OL} V _{CN}	$V_{\text{DD}} = 0.3 \text{V to } \text{V}_{\text{DD}} - 0.3 \text{V},$ $M = \text{V}_{\text{SS}}$		
AC Response								
Gain Bandwidth Product		GBWP		1.0		MHz		
Phase Margin	PM —		90	—	0	G = +1 V/V		
Slew Rate	SR	—	0.6	—	V/µs			
$\begin{array}{c} 120 \\ 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ 0 \\ -20 \\ 0 \\ -20 \\ 0.1 \\ 1 \\ 1 \\ 10 \\ 100 \\ $								
Frequen	icy (H	IZ)					Source: MCP6001 datasheet	

PYKC 15 Oct 2024